Constraint Handling Using Tournament Selection: Abductive Inference in Partly Deterministic Bayesian Networks

نویسندگان

  • Severino F. Galán
  • Ole J. Mengshoel
چکیده

Constraints occur in many application areas of interest to evolutionary computation. The area considered here is Bayesian networks (BNs), which is a probability-based method for representing and reasoning with uncertain knowledge. This work deals with constraints in BNs and investigates how tournament selection can be adapted to better process such constraints in the context of abductive inference. Abductive inference in BNs consists of finding the most probable explanation given some evidence. Since exact abductive inference is NP-hard, several approximate approaches to this inference task have been developed. One of them applies evolutionary techniques in order to find optimal or close-to-optimal explanations. A problem with the traditional evolutionary approach is this: As the number of constraints determined by the zeros in the conditional probability tables grows, performance deteriorates because the number of explanations whose probability is greater than zero decreases. To minimize this problem, this paper presents and analyzes a new evolutionary approach to abductive inference in BNs. By considering abductive inference as a constraint optimization problem, the novel approach improves performance dramatically when a BN's conditional probability tables contain a significant number of zeros. Experimental results are presented comparing the performances of the traditional evolutionary approach and the approach introduced in this work. The results show that the new approach significantly outperforms the traditional one.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constraint Handling Using Tournament Selection: Abductive Inference in Partly Deterministic Bayesian Network

Constraints occur in many application areas of interest to evolutionary computation. The area considered here is Bayesian networks (BNs), which is a probability-based method for representing and reasoning with uncertain knowledge. This work deals with constraints in BNs and investigates how tournament selection can be adapted to better process such constraints in the context of abductive infere...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Abductive inference in Bayesian networks using distributed overlapping swarm intelligence

In this paper we propose several approximation algorithms for the problems of full and partial abductive inference in Bayesian belief networks. Full abductive inference is the problem of finding the k most probable state assignments to all non-evidence variables in the network while partial abductive inference is the problem of finding the k most probable state assignments for a subset of the n...

متن کامل

Partial abductive inference in Bayesian belief networks - an evolutionary computation approach by using problem-specific genetic operators

Abductive inference in Bayesian belief networks (BBNs) is intended as the process of generating the most probable configurations given observed evidence. When we are interested only in a subset of the network’s variables, this problem is called partial abductive inference. Both problems are NP-hard and so exact computation is not always possible. In this paper, a genetic algorithm is used to pe...

متن کامل

Abductive Inference in Bayesian Networks: A Review

The goal of this paper is to serve as a survey for the problem of abductive inference (or belief revision) in Bayesian networks. Thus, the problem is introduced in its two variants: total abduction (or MPE) and partial abduction (or MAP). Also, the problem is formulated in its general case, that is, looking for the K best explanations. Then, a (non exhaustive) review of exact and approximate al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Evolutionary computation

دوره 17 1  شماره 

صفحات  -

تاریخ انتشار 2009